Global Optimality Conditions in Maximizing a Convex Quadratic Function under Convex Quadratic Constraints
نویسنده
چکیده
For the problem of maximizing a convex quadratic function under convex quadratic constraints, we derive conditions characterizing a globally optimal solution. The method consists in exploiting the global optimality conditions, expressed in terms of ε-subdifferentials of convex functions and ε-normal directions, to convex sets. By specializing the problem of maximizing a convex function over a convex set, we find explicit conditions for optimality.
منابع مشابه
A Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint
In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...
متن کاملA Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems
In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...
متن کاملGlobal Optimality Conditions for Quadratic Optimization Problems with Binary Constraints
We consider nonconvex quadratic optimization problems with binary constraints. Our main result identifies a class of quadratic problems for which a given feasible point is global optimal. We also establish a necessary global optimality condition. These conditions are expressed in a simple way in terms of the problem’s data. We also study the relations between optimal solutions of the nonconvex ...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 21 شماره
صفحات -
تاریخ انتشار 2001